
CS7642 Project 2: Lunar Lander
Fernando Villamarin
fdiaz35@gatech.edu

Commit Hash: a0dc84073c415d728c190b8f814d789fedf78706

Abstract—This study investigates the impact of various hy-
perparameters on the performance of a Deep Q-Learning (DQL)
agent in the Lunar Lander environment, focusing on the discount
factor (γ), exploration rate (ϵ-decay), and batch size. Addition-
ally, the performance of the Dueling Network architecture was
compared with regular single-stream architectures.

I. LUNAR LANDER

The Lunar Lander environment, part of the Box2D simula-
tion environments in the Gymnasium framework, emulates a
lunar lander module that requires control in order to achieve
a safe landing on the Moon’s surface. The discrete action
space comprises four distinct actions: do nothing, fire left
orientation engine, fire main engine, and fire right orientation
engine. The observation space is an 8-dimensional vector
containing information about the lander’s position, velocities,
angle, angular velocity, and leg contact with the ground, as
shown in (1).

(x, y, ẋ, ẏ, θ, θ̇, legL, legR) (1)

Reward mechanisms within the environment allocate points
for successfully navigating from the top of the screen to the
landing pad and achieving a state of rest, while imposing
penalties for deviating from the pad, crashing, or firing the
engines. The environment is deemed solved when the agent
amasses a total of 200 reward points. The lander module
initiates at the top center of the viewport with a random initial
force exerted on its center of mass, and an episode concludes
if the lander experiences a crash, strays beyond the viewport,
or enters a sleep state.

II. Q-LEARNING

Q-Learning, recognized as a pivotal advancement in the
domain of reinforcement learning, is an off-policy Temporal-
Difference (TD) control algorithm. As opposed to SARSA, Q-
Learning is considered off-policy as it learns an optimal policy
independently of the policy employed during exploration.
This distinction arises from the manner in which Q-Learning
updates its action-value function, denoted as Q(s, a):

Q(st, at)← Q(st, at) + α
[
rt + γmax

a′
Q(st+1, a

′)

−Q(st, at)]
(2)

The critical difference in the update rule (2), compared
to SARSA, is the usage of maxa′ Q(st+1, a

′) instead of
Q(st+1, at+1). This component of the update rule denotes the
selection of the action with the highest Q-value in the next

state, thereby learning the optimal policy irrespective of the
current exploration policy.

However, a major limitation of Q-Learning is its inability
to manage continuous state or action spaces. The standard
Q-Learning algorithm relies on maintaining a tabular repre-
sentation of the action-value function Q(s, a) for all state-
action pairs, rendering it impractical for continuous state or
action spaces due to the infinite number of possible state-action
combinations. As a result, Q-Learning can face scalability
issues and may struggle to converge to an optimal policy in
such environments.

III. DEEP Q-LEARNING (DQL)

Deep Q-Learning (DQL) is a technique that synergistically
integrates the principles of conventional Q-learning with the
representational capabilities of deep neural networks. Pio-
neered by Mnih et al. [2], the DQL algorithm addresses
the intrinsic limitations of classic Q-Learning techniques in
handling high-dimensional and continuous state or action
spaces effectively.

The fundamental concept underpinning DQL is the approxi-
mation of the Q-function, responsible for mapping state-action
pairs to their respective Q-values, using a deep neural network
as a function approximator. Neural networks trained through
this method are referred to as Deep Q-Networks (DQN). By
utilizing a DQN, the inherent structure of the Q-function can
be effectively learned, enabling generalization from observed
experiences to make predictions about previously unencoun-
tered state-action pairs. This capacity to learn from raw
sensory input empowers DQN agents to establish intricate
control policies even in the face of demanding environments.

Furthermore, the DQL algorithm incorporates experience
replay, a technique that stores past experiences in a replay
buffer and samples them randomly for training. This approach
breaks the temporal correlations between experiences, promot-
ing more stable and efficient learning.

A. Double Deep Q-Learning

Double Deep Q-Learning is a crucial advancement in the
DQL algorithm, as it introduces a target network [4], which
serves as a separate neural network used for stabilizing the
learning process. By employing a fixed set of Q-value esti-
mates during training, the target network mitigates the risk of
oscillations and divergence that might arise from the use of a
single, constantly updating network.

Algorithm 1: Double Deep Q-Learning with Experi-
ence Replay

Data: Learning rate α, discount factor γ, soft update
factor τ , exploration probability ϵ

Initialize primary network Q with random weights θ;
Initialize target network Q̂ with weights θ−, set
θ− = θ;

Initialize experience replay buffer D to capacity N ;
for episode e = 1, M do

Initialize state s;
for time step t = 1, T do

Choose action a based on exploration strategy
ϵ and Q(s, a; θ);

Execute action a, observe reward r and next
state s′;

Store transition (s, a, r, s′) in replay buffer D;
Set s = s′;
Sample a random minibatch of transitions from
D;

foreach transition (si, ai, ri, s
′
i) in minibatch

do
Compute a′Q = argmaxa′ Q(s′i, a

′; θ);
Compute target value yi:

yi =

{
ri, for terminal s′i
ri + γQ̂(s′i, a

′
Q; θ

−), otherwise

Update primary network weights θ using
gradient descent on (yi −Q(si, ai; θ))

2;
Perform soft update on target network weights:
θ− ← τθ + (1− τ)θ−;

B. Dueling Deep Q Networks

Dueling Deep Q-Networks (DDQN), introduced by Wang
et al. (2016), represent a significant advancement in the
field of reinforcement learning by proposing a novel neural
network architecture tailored specifically for model-free RL.
The central idea of DDQN is the explicit separation of the
representation of state values, denoted as V (s), and state-
dependent action advantages, denoted as A(s, a). The pro-
posed dueling architecture consists of two distinct streams that
represent the value and advantage functions, while sharing a
common feature extraction backbone. Formally, the DDQN
estimates the action-value function Q(s, a) as shown in (3).

Q(s, a; θ, α, β) = V (s; θ, α)

+

(
A(s, a; θ, β)− 1

|A|
∑
a′

A(s, a′; θ, β)

)
,

(3)

where θ represents the shared parameters of the feature extrac-
tion backbone, and α and β denote the parameters of the value

and advantage streams, respectively. A is the set of possible
actions, and |A| is the cardinality of the action set.

Fig. 1. A common single-stream Q-network (top) and the dueling Q-network
(bottom) are depicted. The dueling network employs two distinct streams to
separately estimate the scalar state-value and the action advantages; the green
output module incorporates Equation (3) to integrate these estimates. Both
networks produce Q-values for every action. [5]

In order to assess the performance of different network
architectures, we compared the conventional single-stream
network architecture with the dueling network architecture, in
addition to tuning hyperparameters. The dueling architecture’s
ability to separate the estimation of state values and action
advantages allows the network to learn valuable states without
the need to explicitly consider the impact of each action
in every state. This characteristic proves to be particularly
advantageous in the Lunar Lander environment, where certain
instances may render the lander’s actions to have minimal or
negligible effects on its position or orientation.

In such situations, the dueling architecture is capable of
rapidly identifying the most appropriate actions for the lander
without being burdened by the necessity to evaluate the
consequences of every possible action in a specific state. Wang
et al. [5] demonstrated the efficacy of this approach in the Atari
game Enduro, wherein the agent had to navigate a car down
a road while avoiding collisions with obstacles, a problem
bearing resemblance to the Lunar Lander environment.

TABLE I
NETWORK ARCHITECTURES

Network Architecture Hidden Layers

Network 1 64 x 64
Network 2 64 x 128 x 64
Network 3 128 x 256 x 128
Dueling Network 64 x 64 x 32; 16; 16

The networks examined in this study are presented in Table
I. ReLU activation functions are employed in all layers for
each of these networks.

IV. METHODOLOGY

To identify appropriate hyperparameters, the networks were
initialized with a set of parameters, trained over 2,000
episodes, and subsequently tested across 100 episodes. The
hyperparameters investigated through a grid-search approach
are presented in Table II. A total of 24 agents were trained
and tested in this step, encompassing 4 network architectures
and 3 hyperparameters, each with 2 possible values.

Throughout the training and testing process, agents were
restricted to a maximum of 500 steps. If they were unable
to land the aircraft within this limit, the environment would
terminate without a reward.

TABLE II
HYPERPARAMETERS EXPLORED

Hyperparameter Values

α [0.001, 0.01]
τ [0.005, 0.05]
Batch Size [64, 128]

The agent that delivered the most outstanding performance
utilized the Dueling Network, attaining an average total reward
of 250.56 across 100 consecutive episodes. As illustrated in
Figure 2, the agent experienced a crash in only one episode,
specifically episode 75.

Fig. 2. Test performance of the Dueling Network following 2,000 episodes
of training. The average total reward is 250.56, and the agent encountered a
single crash.

The ultimate selection of hyperparameters employed in the
experiments is presented in Table III, showcasing the optimal
configuration discovered after the hyperparameter search. It is
important to mention that for the ϵ-decay, we have employed
a decay schedule, similar to the one proposed by Morales [1],
which logarithmically spaces the values over the entire range
of training episodes.

As illustrated in Figure 3, the agent was able to success-
fully clear the environment at around episode 1,250 in the
training environment, where it followed an ϵ-greedy strategy,

TABLE III
FINAL HYPERPARAMETERS

Hyperparameter Value

Network Architecture Dueling Network
Number of Episodes 2,000
γ 0.99
α 0.001
τ 0.005
ϵ-starting 1.0
ϵ-ending 0.1
ϵ-decay 0.9
Batch Size 64
Buffer Size 100,000
Optimizer Adam
Loss Function Smooth L1 Loss

choosing random, sub-optimal actions with a probability of
ϵ. As mentioned earlier, after training, the agent achieved an
average total reward of 250.56. We considered implementing
early stopping to halt training once the agent could clear the
environment; however, since the objective of this project is to
explore the effects of different hyperparameters, we decided
against this approach.

Fig. 3. The training performance of the Dueling Network was observed over
2,000 training episodes. As illustrated by the blue line, the agent achieved
a total reward of over 200 across 100 consecutive episodes around episode
1,250. This accomplishment is particularly impressive considering that, at that
episode and according to the ϵ schedule, the agent had a 12.79% probability
of selecting a random action.

V. EXPERIMENTS & RESULTS

To investigate the impact of varying hyperparameter values,
we utilized the agent outlined in Table III and examined the
effects of different values for γ, ϵ-decay, and batch size. To
facilitate clearer comparisons, we employed a rolling average
of the total reward from the last 100 training episodes.

A. Gamma

As shown in Figure 4, the agent with a γ of 0.99 is the top
performer. However, this model exhibits more variance than
the others, which are much more stable. Except for the dip in
performance that the agent in red (γ = 0.9) experiences in the

later episodes, it can be observed that models with a higher
value of γ generally perform better.

Fig. 4. Total reward received while training for different values of γ.

In the Lunar Lander environment, it is crucial for the agent
to learn a series of decisions that lead to a safe landing on
the moon’s surface. A higher value of γ prioritizes long-
term rewards over immediate ones, which in turn encourages
the agent to consider the implications of its actions over an
extended temporal horizon.

In this environment, landing safely requires the agent to
carefully control the lander’s velocity, angle, and fuel con-
sumption. By prioritizing long-term rewards, the agent can
better learn to optimize these factors in a coordinated manner,
ultimately leading to more successful landings.

In contrast, agents with lower values of γ might focus more
on immediate rewards, potentially neglecting important aspects
of the task or making shortsighted decisions that could lead
to crashes or suboptimal landings. This is why models with a
higher value of γ generally perform better in the Lunar Lander
environment.

B. Epsilon

To examine the impact of different ϵ values on the agent’s
performance, the hyperparameter ϵ-decay was adjusted while
keeping the ϵ-ending at 0.1 and the ϵ-starting at 1.0. The
resulting decay schedules can be observed in Figure 5.

Examining Figure 6, it is particularly noteworthy that the
agent with the lowest ϵ-decay, 0.1, can achieve a total reward
of over 200 as early as episode 250. It can be observed that
agents with lower ϵ-decay values, which are more prone to
exploitation, reach the 200-point threshold earlier. This is due
to the fact that these agents explore the environment less
aggressively compared to others with higher ϵ-decay rates.

This slower rate of exploration means that the agent focuses
more on exploiting the learned knowledge, which may allow it
to achieve higher rewards more quickly. However, this might
also result in a less diverse exploration of the environment,
potentially leading to suboptimal policies.

Fig. 5. Different ϵ decay schedules. The schedules are logarithmically spaced
according to ϵ-decay and offset by ϵ-ending.

Fig. 6. Total reward received while training for different values of ϵ-decay.

Thus, although the agent demonstrated good performance
in this particular case, it is quite possible that the lack of
exploration may have detrimental effects in other runs. In fact,
in Figure 6, the performance of the agent with ϵ = 0.3 is
observed to deteriorate significantly after the 1,250th episode.

This decline could be attributed to the agent converging to a
suboptimal policy due to limited exploration. The initial suc-
cess in attaining high rewards may have led the agent to believe
that its current policy was optimal. As the agent persists in
exploiting its learned knowledge without adequate exploration,
it may fail to identify superior strategies. Consequently, the
performance deteriorates beyond the 1,250th episode, as the
agent becomes trapped in a local optimum and is unable to
adapt to novel challenges or more effective approaches.

C. Batch Size

In DQL, the batch size refers to the number of experiences
or transitions sampled from the replay buffer to train the neural
network during each update step. The batch consists of a
set of state-action-reward-next state tuples, which are used to
compute the loss function and update the network’s weights.

A larger batch size can potentially lead to more stable training,
as it provides a more diverse set of experiences to learn from,
thereby reducing the impact of correlated data.

Fig. 7. Total reward received while training for different batch sizes.

Figure 7 depicts the total rewards received during training
for different batch sizes. As observed, agents with larger batch
sizes generally achieve more consistent performance, whereas
those with smaller batch sizes exhibit increased variance and
potential degradation in later episodes.

A prime example is the agent with a batch size of 16,
which experiences a significant decline in performance during
the latter episodes. This suggests that smaller batch sizes
may not offer adequate diversity in the experiences used
for training, potentially leading to unstable learning and an
increased likelihood of convergence to suboptimal policies. In
contrast, agents with larger batch sizes demonstrate enhanced
stability in their performance throughout the training process.

It is important to note, however, that larger batch sizes also
require more computational resources and can slow down the
training process, as can be observed in Figure 8.

Fig. 8. Training time by batch size.

VI. CONCLUSIONS

In conclusion, our experiments demonstrated the impact of
various hyperparameters, including γ, ϵ-decay, and batch size,
on the performance of a DQL agent in the Lunar Lander
environment. A higher value of γ generally led to better
performance, as it encouraged the agent to prioritize long-
term rewards, enabling it to effectively learn strategies for safe
landings.

Balancing exploration and exploitation through the adjust-
ment of ϵ-decay is crucial to prevent premature convergence to
suboptimal policies. Agents with lower ϵ-decay values tended
to reach the 200-point threshold earlier but were at risk of
deteriorating performance due to limited exploration.

Larger batch sizes resulted in more stable learning and
consistent performance, at the cost of increased computa-
tional resources and training time. It is essential to find an
appropriate batch size that balances learning stability and
computational efficiency.

Furthermore, our study revealed that, for the Lunar Lander
environment, the Dueling Network architecture outperformed
regular single-stream architectures. This finding aligns with
the results reported by Van Hasselt et al. [4] and underscores
the relevance of selecting appropriate network architectures
for reinforcement learning tasks.

VII. LIMITATIONS

A primary limitation encountered in this study has been
the scarcity of computational resources necessary to conduct
a more extensive range of experiments, particularly to validate
the final results. An ideal methodological approach would
entail training multiple models for each set of hyperparameters
and architectures, subsequently averaging the results to obtain
a more robust understanding of agent performance. However,
given that training a single agent could take approximately 40
to 60 minutes even with high-end hardware, this comprehen-
sive approach was deemed unfeasible for the present project.

In addition to the computational resource limitations, an-
other aspect that could have been explored further in this
study is the incorporation of Prioritized Experience Replay
(PER) in the training process. PER is a technique that has
been shown to improve the learning efficiency of DQL agents
by selectively sampling experiences from the replay buffer
based on their significance, as determined by their associated
temporal-difference (TD) errors [3].

REFERENCES

[1] Miguel Morales. Grokking Deep Reinforcement Learning. 2020.
[2] Volodymyr Mnih, Koray Kavukcuoglu, David Silver, Alex Graves, Ioan-

nis Antonoglou, Daan Wierstra, and Martin Riedmiller. Playing Atari
with Deep Reinforcement Learning. 12 2013.

[3] Tom Schaul, John Quan, Ioannis Antonoglou, and David Silver. Priori-
tized Experience Replay. 11 2015.

[4] Hado van Hasselt, Arthur Guez, and David Silver. Deep Reinforcement
Learning with Double Q-learning. 9 2015.

[5] Ziyu Wang, Tom Schaul, Matteo Hessel, Hado van Hasselt, Marc Lanctot,
and Nando de Freitas. Dueling Network Architectures for Deep Rein-
forcement Learning. 11 2015.

